Bab 7. Fluida Statis & Fluida Dinamis

Pengertian Fluida

Dalam fisika, fluida diartikan sebagai suatu zat yang dapat mengalir. Anda mungkin pernah belajar di sekolah bahwa materi yang kita temui dalam kehidupan sehari-hari terdiri dari zat padat, cair dan gas. Nah, istilah fluida mencakup zat cair dan gas, karena zat cair seperti air atau zat gas seperti udara dapat mengalir. Zat padat seperti batu atau besi tidak dapat mengalir sehingga tidak bisa digolongkan dalam fluida. Untuk lebih memahami penjelasan gurumuda, alangkah baiknya jika kita tinjau beberapa contoh dalam kehidupan sehari-hari. Ketika dirimu mandi, dirimu pasti membutuhkan air. Untuk sampai ke bak penampung, air dialirkan baik dari mata air atau disedot dari sumur. Air merupakan salah satu contoh zat cair. Masih ada contoh zat cair lainnya seperti minyak pelumas, susu dan sebagainya. Semuanya zat cair itu dapat kita kelompokan ke dalam fluida karena sifatnya yang dapat mengalir dari satu tempat ke tempat yang lain.

Selain zat cair, zat gas juga termasuk fluida. zat gas juga dapat mengalir dari satu satu tempat ke tempat lain. Hembusan angin merupakan contoh udara yang berpindah dari satu tempat ke tempat lain.

Zat padat tidak dapat digolongkan ke dalam fluida karena zat padat tidak dapat mengalir. Batu atau besi tidak dapat mengalir seperti air atau udara. Hal ini dikarenakan zat pada t cenderung tegar dan mempertahankan bentuknya sedangkan fluida tidak mempertahankan bentuknya tetapi mengalir. Selain zat padat, zat cair dan zat gas, terdapat suatu jenis zat lagi yang dinamakan plasma. Plasma merupakan zat gas yang terionisasi dan sering dinamakan sebagai “wujud keempat dari materi”. Mengenai plasma dapat anda pelajari di perguruan tinggi. Yang pasti, plasma juga tidak dapat digolongkan ke dalam fluida.

Fluida merupakan salah satu aspek yang penting dalam kehidupan kita sehari-hari. Setiap hari kita menghirupnya, meminumnya dan bahkan terapung atau teggelam di dalamnya. Setiap hari pesawat udara terbang melaluinya, kapal laut mengapung di atasnya; demikian juga kapal selam dapat mengapung atau melayang di dalamnya. Air yang kita minum dan udara yang kita hirup juga bersirkulasi di dalam tubuh kita setiap saat, hingga kadang tidak kita sadari. Jika ingin menikmati bagaimana indahnya konsep mekanika fulida bekerja, pergilah ke pantai.

Fluida statis

Pada penjelasan panjang lebar di atas, gurumuda telah menerangkan makna fluida yang menjadi pokok bahasan kita kali ini. Nah, dalam mempelajari Fluida, kita memilahnya menjadi dua bagian yakni Fluida statis (Fluida diam) dan Fluida Dinamis (Fluida bergerak). Kataya fluida bergerak, kok ada fluida yang diam ?Jangan bingung, fluida memang merupakan zat yang dapat mengalir. Yang kita tinjau dalam Fluida statis adalah ketika fluida yang sedang diam pada keadaan setimbang. Jadi kita meninjau fluida ketika tidak sedang bergerak. Pada Fluida Dinamis, kita akan meninjau fluida ketika bergerak.

Fluida dinamis

Aliran fluida secara umum bisa kita bedakan menjadi dua macam, yakni aliran lurus alias laminar dan aliran turbulen. Aliran lurus bisa kita sebut sebagai aliran mulus, karena setiap partikel fluida yang mengalir tidak saling berpotongan. Salah satu contoh aliran laminar adalah naiknya asap dari ujung rokok yang terbakar. Mula-mula asap naik secara teratur (mulus), beberapa saat kemudian asap sudah tidak bergerak secara teratur lagi tetapi berubah menjadi aliran turbulen. Aliran turbulen ditandai dengan adanya linkaran-lingkaran kecil dan menyerupai pusaran dan kerap disebut sebagai arus eddy. Contoh lain dari aliran turbulen adalah pusaran air.
Energi Kinetik Rotasi

Jika energi kinetik translasi merupakan energi yang dimiliki oleh benda-benda yang bergerak pada lintasan lurus, maka energi kinetik rotasi merupakan energi yang dimiliki oleh benda yang melakukan gerak rotasi. Bedanya, dalam gerak lurus kita menganggap setiap benda sebagai partikel tunggal, sedangkan dalam gerak rotasi, setiap benda dianggap sebagai benda tegar (Benda dianggap terdiri dari banyak partikel. Mengenai hal ini sudah gurumuda jelaskan pada pokok bahasan momen inersia).

Persamaan energi kinetik rotasi mirip dengan rumus energi kinetik. Kalau dalam gerak lurus, setiap benda (benda dianggap partikel tunggal) mempunyai massa (m), maka dalam gerak rotasi, setiap benda tegar mempunyai momen inersia (I). Temannya massa tuh momen inersia. Kalau dalam gerak lurus ada kecepatan, maka dalam gerak rotasi ada kecepatan sudut. Secara matematis, energi kinetik rotasi benda tegar, dinyatakan dengan persamaan :

EK rotasi = ½ I ��2

Keterangan:

EK = Energi Kinetik

I = Momen Inersia

�� = Kecepatan sudut

Persamaan Energi Kinetik Rotasi benda tegar yang sudah gurumuda tulis di atas, sebenarnya bisa kita turunkan dari persamaan energi kinetik translasi.

Setiap benda tegar itu dianggap terdiri dari partikel-partikel. Untuk mudahnya perhatikan ilustrasi di bawah.

energi-kinetik-rotasi-b

Ini contoh sebuah benda tegar. Benda tegar bisa dianggap tersusun dari partikel-partikel. Pada gambar, partikel diwakili oleh titik berwarna hitam. Partikel-partikel tersebar di seluruh bagian benda itu. Jarak setiap partikel ke sumbu rotasi berbeda-beda. Pada gambar, sumbu rotasi diwakili oleh garis berwarna biru.

Ketika benda tegar berotasi, semua partikel yang tersebar di seluruh bagian benda itu juga berotasi. Ingat bahwa setiap partikel mempunyai massa (m). Ketika benda tegar berotasi, setiap partikel itu juga bergerak dengan kecepatan (v) tertentu. Kecepatan setiap partikel bergantung pada jaraknya dari sumbu rotasi. Semakin jauh sebuah partikel dari sumbu rotasi, semakin cepat partikel itu bergerak (kecepatannya besar). Sebaliknya, semakin dekat partikel dari sumbu rotasi, semakin lambat partikel itu bergerak (kecepatannya kecil). Untuk membantumu memahami penjelasan gurumuda ini, silahkan mendorong pintu rumah. Dibuktikan sendiri, kalo dirimu belum percaya…

Ketika kita mendorong pintu, pintu juga berotasi alias berputar pada sumbu. Engsel yang menghubungkan pintu dengan tembok berfungsi sebagai sumbu rotasi. Nah, ketika pintu berputar, bagian tepi pintu bergerak lebih cepat (kecepatannya lebih besar). Sebaliknya, bagian pintu yang berada di dekat engsel bergerak lebih pelan (kecepatannya lebih kecil). Jadi ketika sebuah benda berotasi, kecepatan (v) setiap partikel berbeda-beda, tergantung jaraknya dari sumbu rotasi.

Karena setiap partikel mempunyai massa (m) dan kecepatan (v), maka kita bisa mengatakan bahwa ketika sebuah benda tegar berotasi, semua partikel yang menyusun benda itu memiliki energi kinetik (energi kinetik = energi kinetik translasi… jangan lupa ya). Nah, total energi kinetik semua partikel yang menyusun benda tegar = energi kinetik benda tegar. Secara matematis, bisa ditulis sebagai berikut :

EK benda tegar = Total semua Energi Kinetik partikel

EK benda tegar = EK1 + EK2 + EK3 + …. + EKn

EK benda tegar = ½ m1v12 + ½ m2v22 + ½ m3v32 + …. + ½ mnvn2

Keterangan :

EK1 = ½ m1v12 = Energi Kinetik Partikel 1

EK2 = ½ m2v22 = Energi Kinetik Partikel 2

EK3 = ½ m3v32 = Energi Kinetik Partikel 3

Karena partikel yang menyusun benda tegar sangat banyak, maka kita cukup menulis titik-titik (…..)

EKn = ½ mnvn2 = Energi Kinetik partikel yang terakhir

Persamaan di atas bisa kita tulis lagi seperti ini :

energi-kinetik-rotasi-cWalaupun kecepatan linear setiap partikel berbeda-beda, kecepatan sudut semua partikel itu selalu sama. Dengan kata lain, ketika sebuah benda tegar berotasi, kecepatan sudut semua bagian benda itu selalu sama. Hubungan antara kecepatan linear dan kecepatan sudut, dinyatakan dengan persamaan :

energi-kinetik-rotasi-d

Karena kecepatan sudut semua partikel sama, maka persamaan ini bisa ditulis menjadi :

energi-kinetik-rotasi-e

Ini adalah persamaan energi kinetik rotasi benda tegar… Satuan energi kinetik rotasi = joule
Tekanan
Barometer air raksa sebagai pengukur tekanan udara dalam satuan milibar

Tekanan (p) adalah satuan fisika untuk menyatakan gaya (F) per satuan luas (A).

p = \frac{F}{A}

Satuan tekanan sering digunakan untuk mengukur kekuatan dari suatu cairan atau gas.

Satuan tekanan dapat dihubungkan dengan satuan volume (isi) dan suhu. Semakin tinggi tekanan di dalam suatu tempat dengan isi yang sama, maka suhu akan semakin tinggi. Hal ini dapat digunakan untuk menjelaskan mengapa suhu di pegunungan lebih rendah dari pada di dataran rendah, karena di dataran rendah tekanan lebih tinggi.

Rumus dari tekanan dapat juga digunakan untuk menerangkan mengapa pisau yang diasah dan permukaannya menipis menjadi tajam. Semakin kecil luas permukaan, dengan gaya yang sama akan dapatkan tekanan yang lebih tinggi.

Tekanan udara dapat diukur dengan menggunakan barometer.

SUMBER :http://rustamfu.blogspot.com/2010/03/fluida-statis-dan-fluida-dinamis.html

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s